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Sharp Convergence Rates 
for Nonlinear Product Formulas* 

By Eric Schechter 

Abstract. Nonlinear versions of the Lie-Trotter product formula exp[ t(A + B)]= 

lim,, _. [exp((t/n)A )exp(( t/n) B)]n and related formulas are given in this paper. The conver- 
gence rates are optimal. The results are applicable to some nonlinear partial differential 
equations. 

0. Introduction. The Lie-Trotter product formula states that 

(0.1) [exp( A)eexp( nB)exp( n C)] et(A?B?C) asn -* . 

(The exponent n indicates iterated composition.) This is a special case of a more 
general principle: if T(t) (t > 0) is a family of operators with T(O) = I, and if T'(0) 
exists in some appropriate sense, then 

(0.2) T(t/n 
) 

n- exp [ tT'(O)] as n -x o0. 

These product formulas have been studied in [3], [4], [13], [14], [16] and elsewhere. 
They are most familiar when A, B, C, T'(0) are square matrices. But (0.1)-(0.2) and 
other such formulas are also valid for some nonlinear, discontinuous operators A, B, 
C, T'(0) in an arbitrary Banach space; hence the product formulas are applicable to 
some nonlinear partial differential equations. Such formulas also serve as prototypal 
models for some approximation schemes in numerical analysis [7], [9], [11], [12], [17]. 

How fast are the convergences in (0.1)-(0.2)? This depends at least in part on the 
regularity of the operators involved: we may get faster convergence if we assume 
more regularity. In the best possible case, when A, B, C are continuous linear 
operators, we get the fastest possible convergence: 

(0.3) [exp( A)exp( -B)exp( -nC)] - et(A+B+C) O(= ) 

as n -* oo, uniformly for bounded t. This is, again, a special case of a more general 
principle: If D and T(t) are continuous linear operators, and if 

II(T(t) - etD)/t+?l1- QII = o(1) as t 10, 

Received September 6, 1983. 
1980 Mathematics Subject Classification. Primary 65J15; Secondary 34G20, 47H20. 
Key words and phrases. Accretive, alternating direction method, approximation scheme, composition, 

convergence rate, dissipative, evolution, exponential, fractional step method, resolvent, semigroup, split 
step method. 

* Supported in part by a grant from the Vanderbilt University Research Council. 

@1984 American Mathematical Society 
0025-5718/84 $1.00 + $.25 per page 

135 



136 ERIC SCHECHTER 

for some nonzero remainder Q, then we have convergence at the rate 

T(t/n)n - etD = O(tfi1/nf) 

and no faster. This will be proved in 5.9. 
Thus the estimate in (0.3) cannot be improved. But we can obtain faster conver- 

gence by using more complicated formulas. For instance, for continuous linear 
operators, 

(. exp(!A)exp( B)exp( C) + 2exp n ) exp( ) exp( -)] 

_ et(A+B+c) = - (t3In2) 

and 

(0.5) exp( - A )[exp( B )exp( A ) exp(-B )exp( 2t A) 

-et(A+B) = O t3/n2). 

These formulas were discussed in a different form in [18]. Again, the rates are best 
possible. 

Surprisingly, the optimal rates (0.3)-(0.5), which are achieved for continuous 
linear operators, are also achieved for a large class of discontinuous, nonlinear 
operators. That is the main result of this paper. 

Our results are stated in terms of an abstract class of operators in a Banach space. 
The setting is more general than the usual setting of numerical analysis; still, it is 
specific enough so that we obtain sharp convergence rates. The setting is somewhat 
more specialized than the usual setting of nonlinear semigroup theory. Nevertheless, 
the setting is still general enough so that our results are applicable to several kinds of 
mildly nonlinear partial differential equations with smooth coefficients. For in- 
stance, they are applicable to parabolic equations; to hyperbolic equations, during 
the brief interval before shocks develop; and to dispersive equations, such as the 
Korteweg-de Vries equation. These diverse equations have in common the property 
that they preserve smoothness in the spatial variables. That is, if the solution u(t) of 
one of these equations begins at an initial value in some appropriate Sobolev space 
WMIP(Q), then u(t) will remain in that space for at least a while, and it is possible to 
give an upper estimate for IIu(t)II. We shall take m large, so that the solution has 
extra smoothness in the spatial variables; it follows that we can perform calculations 
with u'(t), u"(t), etc. 

The theory developed here is entirely local in time. Hence it is applicable 
regardless of whether solutions exist globally. This is useful because the solutions of 
some differential equations blow up after finite time [1]. 

The class of operators considered in this paper is slightly more complicated and 
less general than the class of "v-generators" studied in [15], [16]. In Section 6 we 
shall show that the generators of the present paper are a subclass of the v-generators. 
A version of (0.1) was proved for v-generators in [16], but the convergence rate was 
not optimal. To prove the optimal rate (0.3), we need hypotheses a bit stronger than 
those of [15], [16]. 
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This paper, and several other related papers, grew out of a portion of the author's 
Ph.D thesis, which was written at the University of Chicago under the supervision of 
Jerry Bona. The author is grateful to Professors Jerry Bona, Jim Douglas, Ridgway 
Scott, and others for their suggestions and encouragement. 

1. Nested Banach Spaces. A differential operator is usually viewed as a discontinu- 
ous operator from some Banach space Wm'P(Q2) into itself. But a differential 
operator of order d may be continuous, or even Lipschitz or Frechet differentiable, 
when viewed as a map from W(k+l)d,P(U) into Wkd,P(2). Using several nested 
Banach spaces, E3 c E2 c E1 c Eo, we are able to treat some differential operators 
as if they were continuous or even differentiable, when they act on the solution u(t) 
of our differential equation. Naturally, this requires us to make estimates of Iu(t) 13, 
where I13 is the norm of E3; some mechanisms for keeping track of these estimates 
will be described in 2.4 and 2.8(c). 

Differentiability may seem like a very strong condition; it is nearly the same as 
linearity. But it is not the same as linearity, and this will be reflected in our results. 
Proposition 5.9 is only proved for linear operators; that result does not generalize 
readily to a nonlinear setting. The theory of convergence of product formulas is 
much more complete for linear operators; see for instance [9]. 

1.1. Notations and Hypotheses. Let R+= [0 , + x) . The maximum of two numbers 
a, b E R+ will be denoted by a v b. 

A bounding function is a mapping y: -2 [0, + ox], nondecreasing in each 
argument, such that for each r E R+ there exists t > 0 with y(t, r) < + oo. 

Throughout this paper, we shall assume that (Eo, I l) (E1, I 1), (E2, 12), (E3, 113) 
are Banach spaces. We assume E3 c E2c El c Eo with continuous inclusions, with 
If l j-, l< If Ij for allff E Ej. Also we assume that (E3, 113) is reflexive. 

Let ? be the Banach space of all continuous linear maps A from E1 into Eo, with 
norm IIAjII= sup{ lAf lo: if 1 < I}. 

1.2. Remarks. Bounding functions are so named because they will be used to 
specify bounds on various quantities. They play a role analogous to that of the 
generic constant c of applied mathematics, or the notations 0( ) and o(.) of 
asymptotic analysis. 

If we use additional spaces E4, E5, etc., and more complicated approximation 
schemes, we can obtain still faster convergence rates by methods analogous to those 
of this paper; but the analysis is then much more complicated. We omit the details. 

Most of the arguments in this paper are quantitative. However, our requirement 
that (E3, 113) be reflexive is a qualitative, or topological, condition, and so it seems 
less essential to the arguments of the paper. We shall use it in 1.3, below, which is 
used in turn to prove 2.7(d), 2.12, 3.9, 5.1. It is not clear whether this qualitative 
condition can be replaced with a quantitative one. Property 1.3(a) is discussed 
further in [15]. 

1.3. Observations. Since (E3, 1 13) is reflexive, the sets {fE E3: If 13 < r) are 
weakly compact in E3. From this we easily obtain the following two results: 

(a) Extend I13 to a map defined on all of Eo, by taking If 3 = +ox when fE 

Eo \ E3. Then the mapping 113: Eo -* [0, + ox] is lower semicontinuous; i.e., the set 
{f E EO; If 13 < r} is closed in Eo for each r E R,. 
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(b) Suppose u: [a, b] -* E3 is bounded, and u is continuous when viewed as a map 
from [a, b] into Eo Then IU(.)13: [a, b] -- R+ is lower semicontinuous and bounded, 
and u is continuous from [a, b] to the weak topology on E3. Hence u is strongly 
measurable in E3. 

1.4. Definition. A mapping W: E2 Eo is /3-weakly regular if ,B: R+-* R+ is a 
nondecreasing function, and for all f, g E E2 we have 

IWf10 < 1(If12), IWf- Wg1O If- g1213(1f12 V1g12) 

1.5. Definition. A mapping A: E - Eo is a-regular if a: R+ -+ R+ is a nondecreas- 
ing function, and the following conditions both hold: 

(a) A(Ej) c Ej forj = 1,2,3, and for allf, g e Ej, we have 

lAftl- 1 < a (IfL.) lAf -AgIj_- < If -gIja (If L v IgIj). 

(b) The mapping A: El Eo is Frechet differentiable; and for all f, g E E2 C El, 
we have 

IIA'(f) Ily. a(if 12), IIA'(f) -A'(g)/[y< If - g12a(f 12 v 1g12). 

1.6. Remark. Some of the conditions in Definitions 1.4, 1.5 are redundant, in the 
sense that they could be omitted if we made a different choice of a, ,B. For instance, 
if W: E2 - Eo satisfies 

IWf- Wglj0 jf - g12#( If12 v1g12) for allf,g E E2 

where 13: R+ -* R+ is some nondecreasing function, then it is easy to see that W is 
13-weakly regular, where /3(r) 13(r) V (IW(O)1O + r/3(r)). The redundant condi- 
tions are included as a convenience of notation; they will simplify computations 
later in this paper. 

1.7. LEMMA. Suppose A is a-regular. Then 

(1.8) IA(f + tg) -A(ff -tA'(f)glo < 2t2IgiligI2a(IfI2 + ti2) 

for allf, g e E2 and t> 0; and 

(1.9) B(f)=A'(f)A(f) is (2a2 )-weakly regular. 

Proof. To prove (1.8), first note that for 0 < s < t we have 

IIA'(f + sg) -A'(f ) ll I (f + sg) -f 12a(f + Sgl2 V If 12) 

< s1g12a(f 12 + t1gj2). 

Now compute 

|A(f + tg) -A(ff -tA'(f )go = f| [dA(f + sg)] -A'(f )g ds 

= f| { A'(f + sg) g - (f ) g} ds 
0 

t 
fIIA'(f + sg) - A'(f )IWgli ds , 
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and now (1.8) follows immediately. To prove (1.9), compute 

I Bfo = |A'(f ) A (f ) lo < ||A'( f ) 11.2| A (f ) I1 < a(If 12)2 

and 

lBf- Bglo = A'(f )A(f -A'(g)A(g)j0 

< IIA'(f)IWA(f) - A(g)I1 + IIA'(f) -A'(g)|l A(g) 

< a(lf 12)1f- g2a(1f 12 V 1g92) + If- g2a(Jf 12 V 1g92)a(19g2) 

< 21f- g12a(If 12 Vjg12)2. 

2. Semigroups and Semiflows. Let R+ = [ 0, + oo) . By a semigroup on a set C, we 
shall mean a family of mappings S(t): C -+ C (t E R+), such that S(O) = I and 
S(t + s) = S(t)S(s). Semigroups arise naturally in the study of autonomous initial 
value problems. In general, if the problem 

(2.1) u'(t) = Au(t) (t > 0), u(O)=f 

has a unique solution u: R+ -. C for each f E C, then the solution is given by 
u(t) = S(t)f for some semigroup S determined, or generated, by A. We say "in 
general" because we have glossed over some technicalities: the definition of "solu- 
tion" varies from one paper to another according to the hypotheses on A. Some 
particular interpretations of "solution" will be given later in this section. 

We shall usually denote by etA the semigroup generated by A. This notation is 
natural: etA is just the familiar exponential function S0'(tA)J/j! if A is a real 
number, or more generally if A is a continuous linear operator in a Banach space. 
That infinite sum may be meaningless for discontinuous, nonlinear operators A. But 
for many A's, continuous or not, linear or not, lim - n(I-S(t/n)Af- still exists 
and defines a semigroup etA; see [21, [5], [61. We shall discuss that formula further in 
6.6. For motivation, keep in mind that if A is a partial differential operator, then 
(I - tA)-1 may be an integral operator, and thus it may behave much better than A. 

We shall use all three notations S(t)f, u(t), etAf. Each has its advantages, 
depending on what ideas we wish to emphasize. For instance, a Lie-Trotter product 
formula like (0.1) can be expressed in terms of initial value problems like (2.1): the 
solution of 

2Au(t) whenO < t < l/n, 

2Bu(t) when l/n < t < 2/n, 

(2.2) u'(t) = 2Au(t) when 2/n < t < 3/n, 
2Bu(t) when 3/n < t < 4/n, 

2Au(t) when 4/n < t < 5/n, 

converges to the solution of u'(t) = (A + B)u(t) when n -- oo. This reformulation 
is less concise than (0.1), but it may help to explain our interest in (0.1): In some 
cases (2.2) may be easier to solve, or to compute numerically, or to analyze, than the 
equation u'(t) = (A + B)u(t). This may be the case if A and B are simple in 
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different ways-e.g., if one is linear and the other is continuous, or if they operate 
on different spatial variables. 

For some applications [1], a solution of (2.1) exists not on all of R+, but merely on 
some proper subinterval [ 0, T) . Hence we shall consider semiflows (i.e., local 
semigroups). 

2.3. Definition. We shall say that T is a semiflow on a set C if the following four 
conditions hold: 

(a) (t, f) T(t)f is a mapping from some domain D(T) c R+ x C, into C. 
(b) For each f E C, the set D(T(-)f) {t E R+: (t, f) E D(T)} is an interval 

containing 0. 
(c) T(O)f = f for all f E C. 
(d) Let t, s > 0 and f E C. Then (t + s, f ) E D(T) if and only if both (s, f ) and 

(t, T(s)f ) belong to D(T), in which case T(t + s)f = T(t)T(s)f. 
As with semigroups, the semiflow generated by an operator A will be denoted by 

etA. This will be made precise in the next few paragraphs. 
2.4. Notation. We now introduce a particular type of semiflow on R+ which will be 

needed for estimates later. Suppose that A: R + -_ R + is locally Lipschitz and 
nondecreasing. Let po E R+. Then the initial value problem 

(2.5) p'(t) = {( p(t)) (O <, t < T), p (O) =P pO 

has a unique solution, for some T > 0. We shall denote that solution by p(t) = 

et4( )po = exp[t ( )Jpo. Note that p(t) is a nondecreasing function of t. Choose T as 
large as possible; then at least one of T, limtTTp(t) must be + oo. If T < + 00, it iS 

natural to define p(t) = + oo for all t> T. This extends the semiflow et41( ) on R+ to 
a semigroup on [0, + oo]. The inequality er4( )po < + so will be an abbreviation for 
the statement that po < + oo and (2.5) has a finite solution on [0, 0) for some 
T> r. 

Note that y(t, r) = ett(' )r is a bounding function (defined in 1.1). 
2.6. Definition. Let J c R be an interval, and let A: E1 -. Eo be some mapping 

such that A(E3) C E2. For the purposes of this paper, a solution of u'(t) = Au(t) 
(t E J) will mean a function u: J --*3 with these two properties: 

(a) Iu(.)13 is bounded on compact subintervals of J. 
(b) For all a, b E J, the integral Jfb Au(t) dt exists as a Bochner integral in E2 and 

equals u(b) - u(a). 
2.7. Remarks. The Bochner integral is introduced in [10], [19]; in [81 it is simply 

called the integral. It follows from condition (b) above that 
(c) considered as a mapping from J into E2, u is absolutely continuous on 

compact subsets of J, and u'(t) exists and equals Au(t) for almost all t in J. 
Hence, by Observation 1.3, 
(d) u: J -- E3 is weakly continuous, hence strongly measurable; and I u( () 13: 

J -* R+ is lower semicontinuous and locally bounded. 
2.8. Definition. For the purposes of this paper, we shall say that a mapping A: 

E- Eo is a generator of type (a, 4, w) if: 
(a) A is an a-regular mapping from E1 into Eo. 
(b) 4: R+ -- R+ and w: R+ -* R are nondecreasing functions; 4 is locally Lipschitz, 

and X is continuous. 
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(c) If e`+(If 13 < + 00, then there exists a solution of u'(t) = Au(t) on the 
interval [0, T], satisfying u(0) = f and 

Iu(t)13 < et'("jfj13 for t e [0, TI. 

(d) If uj, u2 are solutions of u'(t) = Au(t) on some interval [0, T], then 

IU1(T) - 
U2(T)Io < -U() U2(0)loexp[f V(uI(t) U v u2(t)13) dtj 

2.9. Remarks. The solution u(t) in 2.8(c) will be denoted by etAf. 

Condition 2.8(d) guarantees that the solution etAf is uniquely determined by f, 
and depends continuously on f when f is restricted to a I 13-bounded set and t is kept 
sufficiently small. The function X plays a role analogous to the constant w which 
appears in much of the literature on nonlinear semigroup theory [2], [3], [5], [6]. But 
a constant will not suffice for some applications; see the examples in [14], [15]. 

Note that a, 4, w are not uniquely determined by A; they can easily be replaced 
by larger functions. 

The arguments of this paper can be made to work with slightly weaker hypotheses 
on 4 and w; see [15], [16] for similar arguments. But that would require longer 
definitions and proofs, so for brevity we shall use the conditions on 4 and X 

indicated above. 
Some elementary examples of generators are given below. Additional characteriza- 

tions of generators are given in 3.8, 3.9, 5.1. Deeper and more complicated examples, 
involving nonlinear partial differential equations with smooth coefficients, can be 
devised using estimates similar to those in [15]. Such long examples will be omitted 
from the present paper, however. 

2.10. Example. Let A be the generator of a strongly continuous, linear semigroup 
etA on a Banach space (Eo, I Io), satisfying IletAll < et' for some constant w E R. For 
j = 1, 2,3, let Ej = D(Aj), with If Ij = If 10 + lAf lo + * + IAJf lo. Let +(r)-wr 
and let a = 1. Then A is a generator of type (a, 4, w). Note that A'(f )g = Ag for all 
f, g E E1. 

2.11. Another Example. Let (Eo, I lo) = (E1, I ) = (E2, 1112) = (E3, 113). Suppose 
A: Eo -+ Eo is continuously Frechet differentiable, and A': Eo - is Lipschitz on 
bounded sets; i.e., 

IIA'(f -A'(g) ly If - glojE(f lo v Igbo) (f, g E Eo) 

for some nondecreasing function E: R,-+ R,. Then A is a generator of type 
(a, A, a), if those functions are selected as follows: First define 

(1 - r)e(l) + (r - 0)E(2) when 0 < r < 1, 

,()_ (2 -r) E(2) + (r r-1)E-(3) when I < r < 2, 

(3-r)e(3) +(r-2)E(4) when 2 < r < 3, 

Then 8> e, and 8 is nondecreasing and locally Lipschitz. Let w(r) = IIA'(0)11f,+ 
rO(r) and A,(r) = IA(0)Io + rw (r); then let a = e V 4 V w. We compute as follows: 

IIA'( f)11y? 11A'(O)1Ly?+ If - ?IOE(If 1O V 1jo) < ' (Iff o); 
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hence 

IA(f)-A(g)lo = [dA(tf + (1 - t)g)] dt 

fA'(tf +(1-t)g)(f -g) dt 
0 ~~~~~~~~~0 

< IIAA'(tf + (1 - t)g) _,?oIf - glo dt ( If lo v Ig o)If - gl0. 

This inequality yields condition 2.8(d), by standard methods of ordinary differential 
equations. Next, 

IA(f)1O < |A(O)IO + IA(f) -A(O)IO < IA(O)IO + If- OO(if lo V 101) = 'lflo) 
This inequality yields condition 2.8(c), again by standard methods. Since E, 4, < a, 
the above estimates also yield conditions 1.5. Thus A is a generator of type (a, 4', X). 

2.12. LEMMA. Suppose that A, a, 4', satisfy conditions 2.8(a), (b). Also suppose 
there exists a bounding function 8 with the following two properties: 

(c') Iff E E3 and T E R+ satisfy 8(, If 13) < + x, then there exists a solution of 
u'(t) = Au(t) with u(O) = f andlu(t)I3 < e '`()If 13 < 8 (T If I3), for all t E [0, T]. 

(d') If 8(T, PO) < + x and if u1, U2 are solutions of u'(t) = Au(t) on [0, T] with 

1U1(0)13, 1U2(O)13 < po then 

iul(T) - U2(T)IO K sU(JO) - u2(0) oexp[mT,(eT4'()po)]. 

Then conditions 2.8(c), (d) also hold; that is, A is a generator of type (a, 4', ). 

Proof. Let u1 ,u2 be any two solutions of u'(t) = Au(t) on an interval [0, T]. Let 
p(t) IuI(t)13 V Iu2(t)13. Then p: [0, T] - R+ is bounded and lower semicontinu- 
ous, by 2.7(d). Let M = sup{ p(t): 0 < t < T}. Since 8 is a bounding function, there 
exists some h > 0 such that L 8(h, M) is finite. Then eh4( )M < L. By hypothesis 
(d'), if 0 < a < b < Tand b - a < h,then 

(2.13) Ju1(b)- u2(b)J0 < |u1(a)- u2(a)l0exp[(b -a)w(e(b-a),p p(a))]. 

The interval [0, T] can be covered by finitely many such subintervals [a, b]. It follows 
that if u1(a) = u2(a) for some a E [0, T], then u1 = u2 on [a, T]. Thus, u1 is uniquely 
determined on [a, T] by its value at a. 

By an application of hypothesis (c'), there exists a solution of 

u'(t) = Au(t) (a < t < a + h), u(a) = uja), 
satisfying lu(a + r)13 < erP( )Iu(a)13 for all r in [0, h]. But since u1 is uniquely 
determined forward in time, we must have u = u1. Again, the whole interval can be 
covered by finitely many subintervals of length less than or equal to h. Hence 

1u1(t)3 < e(t-S)4() u1(s)13, whenever the right side is finite, 
for 0 < s < t < T. Similarly for u2. Therefore p(t) < e(t-S)4'()p(s), whenever the 
right side is finite. 

To prove 2.8(d), temporarily fix some integer n, large enough so that l/n < h. Let 
aj = jl/n forj = O, 1, 2,. ... ,n. Apply (2.13) to the interval [aaj, aj]; we obtain 

Iu1(aj) 
- 

U2(aj)lo < u1(aj-,) - U2(aj-1) oexpp n(e )p(aj_ )) 
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for j = 1, 2, 3,.. , n. Combining these n inequalities, we obtain 

UI(T)- U2(T)|O IU1(O) -U2(0)I0 n - c(e p(aj l) 

< u1(O) -u2(O)LoexP[i2w@(e(T/n)+( )p(aJ))] 

< u1(0) -u2(0)I0exp[-i (e(T/n p( )p(ao)) +f| @(pn(t)) dtj 

where Pn is the step function which takes the value e (T/n4( p(aj) on the interval 
(aj1, aj). Now, observe that e(T/n),(-)p(ao) p(ao) as n x0, so 

(Tln) w (e /n )p-(ao)) 0 whenn x0. 

Also observe that if t E (aj-i, aj), then 

pn(t) = e(T1n)4( )p(aj) < e(T/n)4I( )e(aj-t)4( )p(t) < ef 2/nW+ )p(t) 

and so lim supn 0 pn(t) < p(t). Since X is continuous and nondecreasing, we have 

iMSP | ( Pn (t) ) d t ( P (t) dt 

This completes the proof of 2.8(d). 
To prove 2.8(c), let any f E E3 be given. Suppose that p = e(-)If 13 is finite. 

Choose an integer n large enough so that 3(T/n, p) < + xo. Using hypothesis (c'), 
we show by induction on j = 0, 1, 2,... ,n that u(t) efAf exists on [0, jr/n] and 
satisfies I U(t) 13 < et'4 

- If 13 there. This completes the proof of the lemma. 

3. Approximation Schemes. In this section we define a class of approximation 
schemes. In Propositions 3.8 and 3.9 and Theorem 5.1, we shall show that an 
operator A has such a scheme T if and only if A is a generator, in which case 
T(t/n)n eA as n -+ oo. 

3.1. Definition. We shall say that T is an approximation scheme, restrained by rates 
A, , for the evolution generated by A, correct of order 2 with remainder W and 
bounding function y-or more simply, we shall say that (T, W, A, W, y)-if the 
following five conditions hold: 

(a) A: El -4 Eo is an a-regular mapping, for some a; and W: E3 -> Eo is a 
f-weakly regular mapping, for some ft. 

(b) 4: R+ R+ and w: R+- R are nondecreasing functions; 4 is locally Lipschitz, 
and X is continuous; y: R+ -- R+ is a bounding function. 

(c) (t, f ) -- T(t)f is a mapping from some domain D(T) c R+ x E3, into E3. 
(d) If y(t If 13) < + 00, then e"P'If 13 < y(t, If 13) and (t, f ) E D(T), and 

(3.2) | T(t)f 13 _< et'+( |f 13, 

(3.3) IT(t)f-f 12 < tY(t, If I3), 
(3.4) IT(t)f-f- tAf i1 t2y(t, If 13), 
(3.5) IT(t)f-f- tAf- 4t2A'(f)A(f) - t2Wf | t3y(t, ifI3). 

(e) Let po = If 13 V 1g13, and let p1 = et'( 'po. If y(t, po) < + 00, then Pi < + 00 

and 
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We shall say that T is a scheme for A with remainder W if there exist 4, o, y such that 
(T, W, 4, w, y) is a scheme for A. 

3.7. Observations. (a) For each T, there is at most one A satisfying (3.4). 
(b) For each T and A, there is at most one W satisfying (3.5). 
(c) Suppose (T, W, 4, w, y) is a scheme for A, and c E R,. Let e = c V C3, let 

y(t, r) -y(ct, r), and let T(t) = T(ct). Then (T, c2W, c4, ce, y) is a scheme for 
cA. 

(d) Suppose T1, T2 are schemes for the same operator A, with remainders WI, W2, 
respectively. Then T(t)f - 4 [T1(t)f + T2( t)f ] defines a scheme for A with re- 
mainder W1 + W2. 

3.8. PROPOSITION. Let A be a generator of type (a, 4, w). Let T(t) e A. Then 
(T, 0, 4,, w,, y) is a scheme for A, for some bounding function y. 

Proof. Let yl(t, r) et"( )r. Then whenever yl(t, If 13) < + o we have (t, f ) E 

D(T) and IT(t)f 3 < yl(t, If 13). Thus (3.2) is satisfied if y > y1. Let y2(t, r) 
a(y1(t, r)); then IA(e'Af )2 < y2(t, If 13); hence 

IT(t)f-f 12 = letAf -2 = f A(esAf ) ds < tY2(tq If 13) 

Thus (3.3) is satisfied if y > y2. Next, compute 

|T(t)f-f- tAf 11 = f[A(esAf -A(f )] ds 

< ftIA(esAf -A(f )11 ds < fjiesAf - 12a(IeAA12 V If 12) ds 

< |sY2(Sq If 13)a(y(s, If 13)) ds < It2y2(S, If 13)2. 

Thus (3.4) is satisfied if y > 2 Y22. Following (1.9), we have 

|A'(etAf ) A (etAf) -A'(f ) A (f ) 1o < 2fetf - R2a(letAI2 V If 12)2 

< 2ty2 ( t 9 f 13 )3; 

hence 

T(t )f- f -tAf - 2 t2A' )A (f ) 

0~~~~~~ 
= J| [A(esAf f -A(f )] ds - ft2A'(f )A(f ds 

0 = t IS d A sf) rd ' rd| 

= f||f|S[A'(erAf)A(erAf) -A'(f )A(f )] drds 
0 

< f A'(erAf )A(erAf -A'(f )A(f ) 0drds 

1 Y2(tdfI3 
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Thus (3.5) is satisfied if y > _y3. So T is a scheme for A with remainder 0 and 
bounding function y max{ Y1, Y2, 2Y22, 3 Y23 } 

3.9. PROPOSITION. Let A be a-regular. Let (T, W, 4, w, y) be a scheme for A. 
Suppose that T is a semiflow on E3. 

Then A is a generator of type (a, 4, w), and T(t) et'; hence W = 0. 

Proof. Let any f e E3 be given. Fix some T > 0 small enough so that p 
exp[r( ) I If 13 is finite and y(T, p) is also finite. If t, s E [0, T], then 

IT(t + s)f- T(s)f- tAT(s)f 11 =IT(t)T(s)f- T(s)f- tAT(s)f 11 

t2 y(T, P), 

hence T( - )f is differentiable in E1 from the right at s, with derivative A T(s)f. Also, 

IT(t + s)f- T(s)f 12 =|T(t)T(s)f- T(s)A2 < ty(T, p), 

for t, s E [0, ]. Hence 

|AT(t + s)f- AT(s)f I1 < |T(t + s)f- T(s)f 12a(IT(t + s)f 12 v IT(s)f 12) 

KE ty;(T, p) a(p), 

so the map s *- A T(s)f is continuous into E1. Also, if 0 < h < s < , 

jT(s - h)f- T(s)f + hAT(s)f j1 

=jT(s - h)f- T(h)T(s - h)f + hAT(s)f ji 

<IjT(h)T(s - h)f- T(s - h)f- hAT(s - h)fj1 

+h|AT(s - h)f- AT(s)fj1 

< h 2y(, p)(1 + a(p)), 

so T( * )f is also differentiable in E1 from the left at s, with derivative A T(s)f. 
Thus the mapping T( )f: [0, T] -- E1 is continuously differentiable, with deriva- 

tive (d/ds)T(s)f = AT(s)f. Hence it satisfies this integral equation in E1: 

(3.10) T(t)f= f + tAT(s)f ds. 

Since T( )f is bounded in E3 and continuous in E0, it is strongly measurable in 
E3, by Observation 1.3(b). Therefore A(T( * )f ): [0, TI -- E2 is bounded and strongly 
measurable; hence it is Bochner-integrable. Thus Eq. (3.10) holds in E2. 

By Lemma 2.12, it follows that A is a generator of type (a, 4, w), and T(t) etA. 
By Observation 3.7(b) and Proposition 3.8, we have W = 0. 

4. Composition of Approximation Schemes. 

4.1. THEOREM. If T1, T2 are schemes for Al,A2, respectively, then T(t)- T(t)T2(t) 
is a scheme for A A1 + A2. More precisely: For j = 1, 2, suppose that A. is 

aj-regular. Wj is f3j-weakly regular, and (Tj, Wj, 4j5 j5, yj) is a scheme for Aj. Let 
a = a, + a2, 

(4.2) W(f) = W1(f ) + W2(f) + [A(f)A2() -A'(f )Al(f 
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/3(r) = /3I(r) + /32(r) + 4a,(r)a2(r), 4 = 2(4l V 42), andw = w + W2. Then: A is 
a-regular, W is /3-regular, and (T, W, w, -y) is a scheme for A, where the bounding 
function y can be chosen as follows: Let 

(4.3) v v(t, r) ta2(r) + exp[t2(.*)] r. 

Then let 

(4.4) y(t, r) y2(t, r)[1 + a1(v) + a1(v)2 + (V) 

+Yl(t, v) + al(V)a2 (r)2. 

Proof. Obviously A is a-regular; and W is /3-weakly regular by an argument 
similar to the proof of (1.9). The verifications of (3.2) and (3.6) are easy and are 
omitted. To verify that T, A, y satisfy (3.3), compute 

fT(t)f - ff2 = IT1(t)T2(t)f - f12 s< ITI(t)T2(t)f - T2(t)f12 + IT2(t)f - f12 

< ty (t, |T2(t)f 13) + tY2(t, If 13) 

, ty1(t, et42(-)Iff3) + t72(t, If 13) < tY(t, If f3) 
To verify that T, A, y satisfy (3.4), we first compute 

fA1T2(t)f-AlfI1 < IT2(t)f-fI2a,(IT2(t)f12 v Iff2) 

< t'Y2 (t, If 13) a, ( p(t, If 13)). 

Then we use that estimate, together with the fact that Tj, Aj, yj satisfy (3.4) for 
j= 1,2;weobtain 

IT(t)f- f -tAf 1 I|TI(t)T2(t)f -f -tAlf -tAf1 

< rT1(t)T2(t)f- T2(t)f- tAIT2(t)ff1 

+I T2 (t)f-f- tA2ff1 + tfA1T2 (t)f-AAlf 1 

< t y1(t, IT2(t) 13) + t2y2(t, If f3) + t2y2(t, If 13) a,(v(t, ff13)) 

,<- t2_Y(t, If 13)- 

The verification of (3.5) will take longer. We perform several preliminary compu- 
tations. First, following (1.9), 

fA'(T2(t)f )A1(T2(t)f - A'(f )A1(f )f0 

< 21T2(t)f - f12al(If12 V IT2(t)f12)2 < 2tY2(t, ff13)al(v(t, ffL3))2. 

Second, using 1.4, 

|W2(T2(t)f) -W2(f)0 < fT2(t)f - f12/2(fT2(t)f12 v If f2) 

-<- t72(t, If 13)02(V(t, If 13}) 

Third, using 1.5(a), 

fA1(T2(t)f -Al (f + tA2(f))f0 

< IT2(t)f - (f + tA2f)flal(fT2(t)f11 V If + tA2(f)f1) 

< t2y2(t, If f3)a,([fT2(t)ff1 V If lu] + ta2(Iff2)) 
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Fourth, following (1.8), 

|AI(f + tA2(f)) -IA()-tA (f)A2(f)10 

< IA A a,(If12 + tIA2(f)12) 1 < t2 2(IfI3)2a1(;(t,lfl3)) 

We now use the four estimates above, plus the fact that Tj, Aj, Wj, yj satisfy (3.5) for 
j = 1, 2. We obtain 

|T(t)f-f- tAf- 1t2A'(f )A(f ) It2W(f )Io 

= | TI(t) T2(t)f f-f-tA f ftA2 f 

-t2 [A'(f) + A'2(f )] [AI(f ) + A2() 

-2t2 [W1f + W2f + A1(f )A2(f -A'2(f)A1(f)] 

= | TI(t) T2(t)f f-f -tAf f-tA2 f 

-t2[w f + W2f + 2A'(f )A2(f ) + A'(f )A1(f ) + A'2(f )A2(f)] 

< T1(t)T2(t)f - T2(t)f - tA1(T2(t)f) 

- t2A'(T2(t)f)A1(T2(t)f) - w2(T2(t)f )l 

+ It2 A'(T2(t)f )Al(T2(t)f A-(f )Al(f )lo 

?t2t W2(T2(t)f) -W 

+T2 (t)f-f- tA2f- 4t2A'2 (f 2(f) -2 

+ t|A1(T2(t)f -Al (f + tA2(f ))lo 

+ t|A1(f + tA2(f)) -A(f - tAl(f)A2(f)10 

< t3y1(t, v(t, If L3)) + t372(t, If L3)a,(v(t, If L3))2 

+ yt3y2(t, If L3)2(v(t, IfL3)) 

+t3y2(t, If L3) + t372(t, If 3) a,(v(t, If L3)) 

+2 ta2(IfI3) al(v(t, fl3)) 

Y (t, If13) 

This completes the proof of the theorem. 

4.5. COROLLARY. For j = 1,2,3,..., suppose that Tj is a scheme for Aj with 
remainder Wj. Then T(t) = Tn(t)TnI1(t) . . T2(t)T1(t) is a scheme for A1 + A2 + 

* + An with remainder 

W( f ) = , Wy( f ) + E {A'k(f)Aj(f )-A(f )Ak(f)}; 

and 

T(t) -=-21 TI(t) T2 (t) .. 
Tn_1(t)Tn(t) + Tn(t)Tn_1(t) ..T2 (t) TI(t)} 

is a scheme for A1 + A2 + * + An with remainder E> 1Wj(f). 

Proof. The first conclusion follows from Theorem 4.1 by induction on n. The 
second conclusion then follows from Observation 3.7(d). 
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4.6. THEOREM. Suppose A is a-regular, W is /3-weakly regular, and (T, W, 4, to, y) 
is a scheme for A. Let n be a positive integer, and let U(t) T(t/n)'. Then 
(U, n-1W, 4, o, 8) is a scheme for A, for some bounding function 8; and 8 can be 
chosen independent of n. In fact, we can choose 8 as follows: Let 

v- (t, r) ta(r) + et"( )r; 

then let 

8(t, r) [y(t, v) + ?a(v)3] exp[a(v) + a(v)2 + 13(v)] 
Proof. Define 

(4.7) b b(t, r) a(v) + a(v)2 + 13(v) c c(t, r) y(t, v) + ?a(v)3. 

Then 8(t, r) = ebc, and these quantities are independent of n. 
Fix any n. Let Uj(t) T(t/n)i (j = 0,1,2,... ,n), with U0(t) I. We easily 

verify that Uj, jn -, jn -l satisfy (3.2) and (3.6). Also, by Observation 3.7(c), 
(Ul, n-2W, n - , n-It, n-1y) is a scheme for n-'A. We proceed by induction: for 
some k E {0, 1, 2,.. ..,n - 1}, assume that (Uk, kn-2W, kn-N, kn-1w, ek)is a scheme 
for k-1nA with some bounding function ek. (This is trivial for k = 0, with e0 = 0.) 
We shall apply Theorem 4.1, with 

A1 = n A, WV = n-2W, T1 = U1, 

A2 = kn-1A, W2 = kn-2W, T2 = Uk, 

a1 =n1a, n1 = n2, Y1= n- 
a2 = a, /2 = kn 2P, 72 = Ek 

We could apply that theorem with a2 = kn - la and 42 = kn1- . But we shall instead 
use the slightly larger functions a2 a and 42 4'; these have the advantage of 
being independent of k and n. Note that our definition of ' is consistent with the 
definition used in Theorem 4.1. 

Observe that Uk+l(t) = Ul(t)Uk(t). By Theorem 4.1, Uk+l is a scheme for 

(k + 1)n-'A, with remainder (k + 1)n 2W, and with bounding function Ek+1 given 
by formulas (4.3)-(4.4). That is, 

ek+l(t, r) y2(t, r)[1 + al(r) + aj(v)2 + + yl(t, v) + 1al(P)a 

=C(t, r4i + a(v) a(v) )2 + k43(v) } + (t v) + 1a(p) )a(r )2. Ek 
( ) n ( n ) 2n2 n 2( n) 

In this fashion we recursively define bounding functions C1i, ..2. . e,n. From the 
recursion formula above it follows that ek+ 1 < (1 + (b/n))ek + (c/n), with b, c 
defined as in (4.7). Solve this inequality recursively, with initial value e0 = 0; we 
obtain 

Ek < 1+ -) -+ (l + -) _ + *** + (1 +-)-+- 

|( n) n]bnn 

Finally, for k = n we obtain 

<(i + - < (eb < ebc = r). 

This completes the proof of the theorem. 



SHARP CONVERGENCE FOR NONLINEAR PRODUCT FORMULAS 149 

5. Convergence Rates. 

5.1. THEOREM. Suppose A is a-regular, W is /3-weakly regular, and (T, W, 4, o, y) 
is a scheme for A. 

Then A is a generator of type (a, 4, w), and etA can be approximated as follows: 
Define 8 as in Theorem 4.6, and let p - e"'( )If 13. Then 

ft\n 2t2 

(5.2) T )f - etAf -) e "(0, 

whenever p < + oo and 8(t, p) < + oo. Moreover, if W = 0, then 

t n ~~2t 3 
(5.3) |T( t f - e'Af| t 8(t, p)e`@(P). n ~ 0 n2 

Proof. For positive integers n, let Un(t) T(t/n) . By Theorem 4.6, whenever 
8(t, If 13 V 1g13) < + oo, we have 

(5.4) 1 Un (Of 13 < et*( )If 13, 

(5.5) 1 Un(Of )- f 12 < t8 (t, If 13) 

(5.6) |U()--A| t28(tq If 13) , 

(5.7) LUn(t)f-f- tAf- Wt2A'(f)A(f) - I 
t2n-1Wf j0 < t38(t, If 13), 

(5.8) fUn(t)f- Un(t)go < IJf- gloexp[tw(et'( )(if 13 V 1gl3))]- 
Now let 

A 1 if Wo 0, 
2 ifW=O. 

Since Iglo I gl1 for g e E1, from (5.6)-(5.7) we obtain. 

IUn (t)f - Um (t)f 10 < 2t'+x8 (t, If 13) 

for all positive integers m, n. Let p = p(t, IA3) = e'e( )If 13- Then 

Unk(t)f Uk(t)f 10|= Un f( - u(J) f 

0~~~~~~~~ 

k ? Utk)1 1k )1( kk ) t| 

.exp( k jt;(eikt()f1) 

k ( J t )1+ J t i( t )j- i t+ 

Then, for any positive integers m, n, 

|( tU)nf Lm (t)f Io f I Un(t)f J U,A(t)f If + Unm (t)f Um(t)f 

- 2tlep(t/nX + j/mk)t6( t, p)ef(P)1 
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It follows that { U (t)f }n= converges in Eo to some limit S(t)f, with convergence 
rate 

2t1?x 
IS(t)f - Un(t)fOf0 A (tn p)etw(P), 

whenever p < + oo and 8 < + oo. 
Since IUn(t)f13 < p for all n, the sequence {Un(t)f I'I is relatively weakly 

compact in the reflexive space E3. Therefore S(t)f E1 E3, and Un(t)f -* S(t)f 
weakly in E3. Hence Un(t)f -* S(t)f weakly also in E2 and El. Taking limits, we 
find that all of inequalities (5.4)-(5.6) and (5.8) remain valid when Un is replaced by 
S; and in the limit, (5.7) yields 

S(t)f - f - tAf - +t2A'(f )A(f ) < t3(t, 13). 

Thus (S, 0, 4, o, 3) is a scheme for A. 
When 0 < a 0 1T, then 

IT(T)f- T(g)f o < IT(T)f-f- TAf1 + IT(a)f-f- uAf ? + (T - )IAIl 
< 22y(,If 13) +?(T - a) a(f 13) 

Hence, if 0 < s < t, we have 

|Un(t)f - Un(s)f 1o = T( ) f - Tt- 

= |E( T(?t)iT(?) T(!n)if fT(?n) T(ni)T(!n)f) l 
0 

< e @(P T nT(n f T(n (n T - 

< et {2(n)=( t, p ) + n 

= etw(P) [2 ny(t, p) + (t - t(p ) 

whenever yy(t, p) < + x . Taking limits, 

IS(t)f - S(s)f lo < (t - s)etw(P)a(p) 

and so the mapping t - S(t)f is continuous. 
Let any f E1 E3 and any positive integers m, n be given. Choose t > 0 small 

enough so that y = e(m n)tI()If 13 is finite and also 8((m + n)t, ,u) is finite. As 
k x-* , we have the following convergences in EO: 

t )(m+n)k T/ (m + n)t (m+n)kt), T }f = T +nk f -* S((m +ntf 

T ) S(nt)f = T )t k S(nt)f S(mt)S(nt) 

T( t f = T(- nt ) * S(nt)f. 
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Also, 

t (m+ n)k t mk 
T _ f-_T k S(nt)fo 

= T() T() f- T( ) S(nt)f 

< e t') T - f- S(nt)f | O. 
k ~~~~~0 

Hence S((m + n)t)f = S(mt)S(nt)f for integers m and n. Therefore S(T + a) = 

S(T)S(G) whenever T/a is rational and 8(T + a, e(T+?)4P( )If 3) is finite. Since both 
sides of this equation depend continuously on T, we may drop the requirement that 
T/u be rational. Thus S is a semiflow. 

Now from Proposition 3.9 it follows that A is a generator 'of type (a, 4, w), and 
that S(t) e . This completes the proof of Theorem 5.1. 

5.9. PROPOSITION. Let D and T(t) (t > 0) be continuous linear operators in a 
Banach space (E, I 1). Suppose that IIDII < o and IIT(t)II < et" for some constant 
X E R. Also suppose lIt-'-'[T(t) - etD] - QII -* 0 as t I0, for some constant A > 0 
and some continuous linear operator Q different from 0. Then 

T n - eD O(t,8 /n'I ) as n -x c, 

uniformly for bounded t. This rate cannot be improved if IIQII > 0. In fact, a limit 

(5.10) P(t) = lim T t etD 
n-otfl 1 - nj 

exists uniformly for bounded t, and the remainder term P(t) is nonzero for all t > 0 
sufficiently small. 

Proof. Define 

(5.11) e(t) sup Ts - e - P(t) - e Qe ds. 
0 < ss<t Jesveas We shall show that the latter function has the properties stated in the proposition. 

Observe that 

j=1 E ! j! 

hence 

(5.12) IQ - e TDQe D|| ? IQ - e TDQ| + 11eTDQ - eTDQeaDI 

11 Q1l [(e T _1) + eTw(e("-1)] = 11 Qll[e(T+U)W-1] 

Therefore 

IIQ - P(t)lI = }ft[Q - e(ts)D Qe sD] ds 

< }tj|IIQ e(ts)D Qe sDids < |Q||(etw - 1). 

It follows that IIP(t)ll > (2 - et")IIQII, and so P(t) is nonzero for all t > 0 suffi- 
ciently small. 
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From (5.11) we obtain IIT(t) - e1DII < t8+1[e(t) + 1IQI]. Use this to estimate 

IT(s)k - eksDjj = E T(s)kj [T(s) - esD] e(j 1)sD 

j1= 

k 

< E jjT(s)jj ) |||T(s) - eSDII e(-1)SIIDI 
j=1 

ks# leksw N(S ) + || Q|| ] 
Temporarily fix some positive integer n. For] = 1, 2, 3,.. ,n, let 

C)= ?exp( n tD)Qexp( ntD) n l te 

n l(nl nt n 
n 

n 

Q - exp[(t - s)DjQexp[(s - t) } exp ds. 

Using (5.12), we estimate IlCjll < n-let'IIQI1(eto/n - 1). Now compute 

|| [T() - etD] -P(t) 

n 'p,E (n n (n) 
t 

( )]t 
Tt-( )T () exp( D)]exp( ntD) 

+ n n | (t) exp( ntD)Qexp(' n D)} +-C 
j=1~ ~~~= 

n < n ~E T( t T 
t 

ep D e( tD) 

+ 1 ? ( n) ne@en)+lI],? ne nlI(e - 

= {e(n)[1 + ?] +IIQII[ n +(e-w - I n 

which tends to 0 as n oe, uniformly for bounded t. This completes the proof of 
(5.10). 
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5.13. COROLLARY. Let A, B, C be generators of type (a, 4, w). Then all the 
convergences (0.3)-(0.5) hold uniformly on bounded subsets of E3, uniformly for 
sufficiently small t. Moreover, in general the rates of convergence in those formulas 
cannot be improved. 

Proof. Using 3.7 and 4.5, we find that: 
T1(t)e e 'e tCis a scheme for D A + B + C with a remainder W which is, 

in general, nonzero; 
T2(t) '[etAetBetC + etCetBetAI is a scheme for D A + B + C with remainder 

0; 

T3(t) exp(2A)exp(tB)exp( IA) is a scheme for A + B with remainder 0. 
Hence (0.3)-(0.5) follow from Theorem 5.1. 
To show that the rate of convergence in (0.3) cannot be improved in general, we 

note from (3.5) and 3.8 that 

jT1(t)f - f -t()- tD(f (f-?t2Wv(f )10 tYt f>) |Tl(t)f-ftD(f I )-t2D'( f )D( f )2t ( ( l ty(tq If 13)i 

lefDf - f - tD(f) - 4t2D'(f )D(f)lo <- t3y(t, If 13) 
for some bounding function y. Subtracting, we obtain 

|T,(t)f - etDf - I 
t2W(f )10 < 2t3-y(t, If 13). 

For continuous linear operators, then, Proposition 5.9 is applicable, with Q = 2 W 
and / = 1. 

To show that the convergence rates in (0.4), (0.5) cannot be improved in general, 
we apply Proposition 5.9 with / = 2, again assuming A, B, C are continuous linear 
operators. We omit the details. 

6. Continuity, Dissipativeness, and Further Remarks. 

6.1. PROPOSITION. Let A be a generator of type (a, 4, w). Let p > 0. Then the 
restriction of A to the set { f E E3: If 13 < P } is Holder-continuous from the metric of 
E0, into E0, with exponent 1/2. 

Proof. Define y as in Proposition 3.8. Choose T > 0 small enough so that 
p - e'9 )p is finite and y(T, p) is finite. Then if If 13, 1g13 < p and 0 < t < T, we 
have 

etAf - f - tAf lo < etAf - f - tAf 11 < t2y(t, p), 

letAg - g - tAgjo < letg - g - tAgli t2y(t, p) 

hence 

(6.2) lAf- Aglo < -(IetAf- etAgjo +If- glo + 2t2y(t, p)) 

1 
K Iif - gjo(I + et'(PI)) + 2ty(t, p). t 

Now let 

t = T I g- then t g lf3 + 1g13 
< T the t i 2p 



154 ERIC SCHECHTER 

and also t > 0 if f 7 g. Thus we can substitute this value of t into (6.2). This yields 

lAf- AgIo < lf- glI o (1 + e TW(PI)) + _y(T, p), 
T ~~~~p 

whenever If 13, 113 < p, completing the proof. 

6.3. COROLLARY. Let I I = I 10 and v( ) = I 13. Let A be a-regular, and let 4, X satisfy 
2.8(b). Then A is a generator of type (a, 4,, () if and only if A is, in the sense of [15], a 
v-generator of type (4, w). 

Proof. This is immediate from the definition of v-generator; see [15]. 
6.4. Definition. Let (E, I l) be a Banach space. Let B be a mapping from some 

domain D(B) C E, into E. We say B is dissipative in (E, I1) if 

I (I- XB)f-(I - XB)gI > If- gl 

for all f, g E D(B) and all N > 0. Equivalently, (I - NB) is injective, and the 
resolvent (I - NB) -1 is nonexpansive, for all N > 0. 

Several other, equivalent definitions of dissipative can be found in the literature. 
See [2] for proofs of some of the equivalences. 

6.5. COROLLARY. Let A be a-regular. Let 4, X satisfy 2.8(b). Then A is a generator 
of type (a, 4, w) if and only if the following three conditions hold: 

(a) For each r E R+, the restriction of A to the set { f E E3: If 13 < r } is continuous 
from the metric of Eo, into Eo. 

(b) For each r E R+, the restriction of A - w (r)I to the set {f E E3: If I3 < r} is 
dissipative in the Banach space (Eo lo). 

(c) For each f E E3 there exist sequences { fn } in E3 and { en } in (0, + oo) such that 

If+cA(f) -fnIl - 

En10 n(f) no 0, 
n 

and 

lim sup InIl3 - If13 < 
13 

(If l ) 
n-oo t 

Proof. See 2.7(c) of [15]. 
6.6. Further Remarks. Crandall and Liggett [6] showed that if A is an operator in a 

Banach space (E, II) satisfying R(I - NA) > D(A) for all N > 0 sufficiently small, 
and if A - wI is dissipative for some constant X E R, then there exists a semigroup 
etA defined by limn 1x(I - (t/n)A)-n. Forf E D(A), their proof gave this conver- 
gence rate: 

etAf( I- _-A < f < tIAf I 

A better rate can be achieved if we assume more about A. It is easy to show that if A 
is a continuous linear operator, then 

letA -(I- tA)-l + 2t2A211 = 0(t3) as t 10. 



SHARP CONVERGENCE FOR NONLINEAR PRODUCT FORMULAS 155 

Hence, by Proposition 5.9, we have convergence at the rate 

( n 2 etA (I - A) = 

and no faster. It is also easy to show that 

etA -(I + jA)(I- jA) 0= (t3) ast 4O, 

and hence, for continuous linear A, 

etA-[ 
I + t- I_tA)]=O(t) 

Formulas like the last one are investigated for some classes of nonlinear, discontinu- 
ous operators in a Hilbert space, in [12]. 
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